
Amada: Web Data Repositories in the Amazon Cloud

Andrés Aranda-Andújar1 Francesca Bugiotti1,3 Jesús Camacho-Rodríguez1,2

Dario Colazzo1,2 François Goasdoué1,2 Zoi Kaoudi1,2 Ioana Manolescu1,2

1Inria Saclay–Île-de-France, France 2Université Paris-Sud, France 3Università Roma Tre, Italy
firstname.lastname@inria.fr

ABSTRACT
We present Amada, a platform for storing Web data (in
particular, XML documents and RDF graphs) based on the
Amazon Web Services (AWS) cloud infrastructure. Amada
operates in a Software as a Service (SaaS) approach, allow-
ing users to upload, index, store, and query large volumes
of Web data. The demonstration shows (i) the step-by-step
procedure for building and exploiting the warehouse (stor-
ing, indexing, querying) and (ii) the monitoring tools en-
abling one to control the expenses (monetary costs) charged
by AWS for the operations involved while running Amada.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Concurrency,
Distributed databases, Query processing

General Terms
Design, Experimentation, Performance, Economics

Keywords
Cloud Computing, Web Data Management, Query Process-
ing, AWS, Monetary Cost

1. INTRODUCTION
Increasing volumes of data are produced or exported into

Web data formats. Among these, the W3C’s XML standard
for structured documents (and in particular Web pages) and
RDF for Semantic Web data are the best known. XML
allows encoding complex documents whose structure may
be constrained by an XML Schema. RDF graphs consist of
triples of the form (s, p, o) stating that the subject node s
has the property edge p whose value is the object node o.
XML takes the lion’s share of Web content nowadays. At
the same time, RDF is increasingly being used in numerous
data sources such as in Linked Open Data.

To exploit large volumes of Web data, an interesting op-
tion is to warehouse it into a single access point reposi-
tory. This typically involves some crawling or other means
of identifying interesting data sources and loading these data
sources into the repository where further processing can be
applied. Huge data volumes have raised the need for dis-
tributed storage architectures and platforms typically de-
ployed in a cloud environment, which provides scalable and

Copyright is held by the author/owner(s).
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
ACM 978-1-4503-1156-4/12/10.

elastic resource allocation. In this work, we consider host-
ing large volumes of Web data in the cloud, and their effi-
cient storage and querying through a (distributed, parallel)
platform also running in the cloud. Such an architecture
belongs to the general Software as a Service (SaaS) setting
where the whole stack from the hardware to the data man-
agement layer are hosted and rented from the cloud.

In this context, an important challenge is how to efficiently
identify the parts of the data which need to be consulted in
order to answer a given query. In a cloud SaaS setting,
efficient access path selection not only speeds up query pro-
cessing, but also helps to reduce the monetary costs charged
for querying, by avoiding work on some cloud machines that
do not end up producing query results.

Amada is a scalable platform for Web data management
within the cloud, with a particular focus on this cloud-
based data access path selection challenge [3, 4]. Amada
stores Web data in the cloud, and establishes indexes at
various granularity over the data. Following other works [2,
11], Amada uses the Amazon Web Services (AWS) cloud
(http://aws.amazon.com), among the most prominent ones
today. An important AWS feature is its elasticity, i.e., the
ability to smoothly allocate computing power, storage, or
other services, as the application demands vary.

The contribution of Amada is twofold. First, Amada
presents a novel architecture harnessing the various sub-
systems of the popular cloud platform AWS for higher-level,
efficient management of complex data. Second, Amada in-
cludes an index-based mechanism for access path selection
within a cloud-based repository, reducing query processing
time as well as the warehouse operating costs.

The remainder of this work is structured as follows. Sec-
tion 2 describes Amada architecture while Section 3 outlines
our Web data indexing algorithms. We present the demon-
strated features in Section 4. Finally, we briefly discuss other
related works in Section 5 and conclude in Section 6.

2. ARCHITECTURE
The design of Amada was guided by the following objec-

tives. First, we aimed to leverage AWS resources by scaling
up to large data volumes. Second, we aimed at efficiency,
in particular for the document storage and querying oper-
ations. We quantify this efficiency by the response time
provided by the cloud-hosted application. Our third objec-
tive is to minimize cloud resource usage, i.e., the total work
required for our operations. This is all the more important
since in a cloud, total work translates into monetary costs.
Fourth, the architecture should not be too closely tied to a
specific XML or RDF query processor.

2749



Figure 1: System architecture.

Amada stores data and indexes in a distributed fashion
within AWS, but the main ideas of our work can be trans-
lated to other platforms. Data is stored within Amazon Sim-
ple Storage Service (S3), which is the AWS store for large
objects. S3 assigns to each dataset a URI, based on which it
can be retrieved. We build data indexes within SimpleDB, a
simple database system supporting SQL-style queries based
on a key-value model. Observe that while SimpleDB general-
izes relational databases by supporting heterogeneous tuple
and multi-valued attributes, it is more restricted in that it
only supports single-relation queries, i.e., no joins. We have
implemented several indexing strategies for both XML and
RDF, differing in the choice of index keys, and in their level
of detail, i.e., whether they point to specific datasets, or to
very fine-grained data items within the datasets. The code
which processes queries runs on virtual machines within the
Amazon Elastic Compute Cloud (EC2). Finally, in order to
synchronize the distributed components of our system, we
use Amazon Simple Queue Service (SQS), which provides
asynchronous message-based communication.

Figure 1 gives an in-depth view of Amada’s architecture.
A dataset submitted to the front-end module is stored as a
file in S3, whose URI is sent to an indexing module running
on an EC2 instance. This module retrieves the correspond-
ing dataset from S3 and builds an index that is stored in
SimpleDB. A query submitted to the front-end module is
sent to a query processor module running on an EC2 in-
stance. This module performs a look-up to the indexes in
SimpleDB so as to find out the relevant datasets for answer-
ing the query, and evaluates the query against them. Results
are written in a file stored in S3, whose URI is sent to the
front-end module to retrieve the query answers.
Scalability, parallelism and fault-toleranceAmada ex-
ploits the elastic scaling of AWS by increasing and decreas-
ing the number of EC2 instances running each module. The
synchronization through the SQS message queues among
modules supports inter-machine parallelism, whereas intra-
machine parallelism is supported by multi-threading our code.
Amada also provides fault-tolerance by using the queues. If
an instance crashes while loading a document or answering
the query, the message which had caused the work to start
becomes available again in the queue, and thus another vir-
tual instance will retrieve it and take over the job.

Amada is implemented in Java and uses AWS SDK for
Java. For processing XML queries within EC2, it uses the
query processor developed within our ViP2P project [13],
while for RDF queries, Amada uses RDF-3X [12].

3. WEB DATA INDEXING STRATEGIES
An important feature of Amada is data indexing within

SimpleDB. The structure of SimpleDB is as follows.
database = domain+

domain = (name, item+)
item = (key, attribute+)
attribute = (name, value)

SimpleDB data is organized in domains. Each domain is
a collection of items identified by their key. In turn, each
item has one or more attributes; an attribute has a name,
and one or several values. An attribute value may be empty
(denoted by ε). Different items within a SimpleDB domain
may have different attribute names.

The SimpleDB API provides a get(d,k) operation retriev-
ing all items in the domain d having the key k, and a put
operation to set values of attributes: put(d,k,(a,v)+) inserts
the attributes (a,v)+ into an item with key k in domain d.
A batchPut variant inserts 25 items at a time and leads to a
better performance. AWS ensures that queries to different
SimpleDB domains run in parallel.
Indexing strategies Conceptually, given a data model M,
an indexing strategy I is a function extracting quadruplets
of the form (domain name, item key, attribute name, at-
tribute value) from an input dataset D. Indexing D accord-
ing to I, then, amounts to (i) computing the quadruplets
in I(D) and (ii) adding these quadruplets to SimpleDB,
using appropriate (batched, sometimes conditional) put op-
erations. Amada implements four indexing strategies for
XML and four for RDF, detailed in [4] and [3], respectively.
In the following, we present only some of them.
XML indexing The XML indexing strategy Label-URI (or
LU, in short) computes quadruplets in which:

• the domain is assigned using a hashing-based mapping
technique [4];

• for each element e whose name is ne, the string ene is
an item key, i.e., we concatenate a token e indicating
that this is an element, to the element tag ne. Simi-
larly, for each attribute a with name na, ana is an item
key, while another key anava reflects its value va. We
proceed similarly for every word w of a text node.

• each item thus obtained has an attribute whose name
is the URI of D, and whose value is empty (ε).

Given an XML query, strategy LU leads to the set of doc-
uments featuring each element and attribute name, value,
and keyword of the query; intersecting these sets leads to
the URIs of documents featuring all of them. Some of the
documents whose URIs are thus retrieved may not satisfy
the query’s structural constraints, e.g., the URI of a docu-
ment of the form 〈a〉〈b/〉〈c/〉〈/a〉 will be retrieved for a query
of the form /a//b/c, i.e., there are some false positives.

A different strategy is Label-URI-ID (or LUI, in short), sim-
ilar to LU but using identifiers of the XML nodes instead of
the ε attribute values of LU. LUI does not return false posi-
tives, but leads to a much larger index than LU, because it
introduces e.g., 10 index entries for 10 elements labeled a in
a document, whereas LU uses only one.
RDF indexing Let D be an RDF graph whose URI is
UD and (s1, p1, o1) be a triple in D. Let s, p and o be
three distinct tokens representing subjects, properties and
objects, respectively. The simplest RDF indexing strategy
called ATT (for attribute-based) uses a single default domain
which is split as the index grows. For (s1, p1, o1), ATT builds
3 item keys: ss1, pp1, oo1. Each such item has a single

2750



Figure 2: Demonstration interface.

attribute UD, whose value is ε. Assume now that we want
to evaluate the SPARQL query:
SELECT ?o WHERE {?s :hasAuthor "Foo" . ?s :hasTitle ?o .}
Amada performs three get queries; one for each constant

of the query: q1 having key phasAuthor, q2 having key oFoo

and q3 having key phasTitle. Then, it intersects the results
of q1 and q2 to ensure that the :hasAuthor property and the
"Foo" object value occur in the same dataset. The result is
then unioned with the result of q3 to obtain the datasets
on which the SPARQL query will be evaluated. SPARQL
semantics allows matches for this query to span over multiple
datasets, i.e., query results are defined on a global “merged”
graph.

Another RDF indexing strategy similar with ATT is ATS
(for attribute subset) but it creates 7 item keys for each
triple. Strategy ATS builds a larger index, in exchange for
less get calls to identify the relevant graphs to a query.
Performance A detailed performance study of the XML
side of Amada is described in [14]. We compare four index-
ing strategies and show that indexing leads to cost savings
that offset the index building and maintenance costs, in our
experiments, after roughly 1000 queries [14].

4. DEMONSTRATION SCENARIO
The demonstration showcases loading and querying data

in Amada in real time within AWS. We use datasets about
cultural artifacts, e.g., Open Data catalog of Bibliothèque
Nationale de France (http://data.bnf.fr/semanticweb), as
well as the general DBPedia corpus. Amada displays in a
Web-based interface (i) index entries to be added to Sim-
pleDB, and (ii) our real-time rendition of the monetary
costs entailed by index creation. Further, for a given query
and indexing strategy, demo attendees will be shown (i) the
calls to the SimpleDB API issued by the query processor to
look up relevant datasets, (ii) the logical and physical plans
for recombining (through intersection, join and/or union)
the look-up results to identify the relevant datasets, and
finally (iii) the AWS resource consumption associated to
loading the respective datasets from S3 into EC2, process-
ing the query there, and downloading the results from the
cloud. Amada includes an advisor tool, which based on
the datasets and workload, provides index recommendations
that depend on the relative importance given to the mini-
mization of query response time and up-front monetary cost.

Figure 2 illustrates the interface; a more complete look-
and-feel is available at http://team.inria.fr/oak/amada/.

5. RELATED WORK
An early work [2] has established the feasibility of building

and exploiting B-tree indexes in S3 of AWS, while [11] fo-

cused on the problem of executing transactional workloads
on cloud architectures, and AWS in particular. More re-
cently, economic models for selecting indexes to materialize
in a cloud were proposed in [9]. These works, however, con-
sidered regular, table-structured data, whereas we focus on
irregular, tree- or graph-structured Web data.

Since the proposal of MapReduce [5] and the appear-
ance of Hadoop, massively parallel data management using
distributed infrastructures (a typical example of which are
cloud-based) is a hot topic in industry and academia. For
instance, XML query processing on top of Hadoop is studied
in [10, 6]. Further, the increasing popularity of RDF has led
to many recent works on parallelizing RDF processing using
MapReduce [7, 8].

6. CONCLUSIONS AND PERSPECTIVES
Amada exploits AWS components in order to achieve

scalable storage and query processing for RDF and XML
data. A main feature is content indexing, which is also the
main focus of this demo proposal. Ongoing work on the
platform includes (i) integrating content indexing within a
generic, AWS-independent framework for massively parallel
data management [1] and (ii) further investigating the im-
pact of RDF graph partitioning on RDF query answering
in a cloud context. Partitioning RDF graphs and efficiently
parallelizing queries over triples entailed by the RDF seman-
tics are open issues in this context.
Acknowledgments This work has been partially funded
by the KIC EIT ICT Labs activity “Clouds for Connected
Cities” 2011 and an AWS in Education research grant.

7. REFERENCES
[1] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and

D. Warneke. Nephele/PACTs: a programming model and
execution framework for web-scale analytical processing. In
SoCC, 2010.

[2] M. Brantner, D. Florescu, D. A. Graf, D. Kossmann, and
T. Kraska. Building a database on S3. In SIGMOD, 2008.

[3] F. Bugiotti, F. Goasdoué, Z. Kaoudi, and I. Manolescu.
RDF data management in the Amazon Cloud. In DanaC
Workshop (collocated with EDBT/ICDT), 2012.

[4] J. Camacho-Rodŕıguez, D. Colazzo, and I. Manolescu.
Building Large XML Stores in the Amazon Cloud. In DMC
Workshop (collocated with ICDE), 2012.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI, 2004.

[6] L. Fegaras, C. Li, U. Gupta, and J. Philip. XML Query
Optimization in Map-Reduce. In WebDB, 2011.

[7] J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL
querying of large RDF graphs. PVLDB, 4(11), 2011.

[8] M. Husain, J. McGlothlin, M. M. Masud, L. Khan, and
B. M. Thuraisingham. Heuristics-Based Query Processing
for Large RDF Graphs Using Cloud Computing. IEEE
Trans. on Knowl. and Data Eng., 2011.

[9] V. Kantere, D. Dash, G. Gratsias, and A. Ailamaki.
Predicting cost amortization for query services. In
SIGMOD, 2011.

[10] S. Khatchadourian, M. P. Consens, and J. Siméon. Having
a ChuQL at XML on the Cloud. In A. Mendelzon Int’l.
Workshop, 2011.

[11] D. Kossmann, T. Kraska, and S. Loesing. An evaluation of
alternative architectures for transaction processing in the
cloud. In SIGMOD, 2010.

[12] T. Neumann and G. Weikum. The RDF-3X Engine for
Scalable Management of RDF Data. VLDBJ, 19(1), 2010.

[13] ViP2P web site. http://vip2p.saclay.inria.fr.
[14] Technical report. http://jesus.camachorodriguez.name/_

media/xml-aws/tech.pdf, 2012.

2751




